skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zorin, Denis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Barrier potentials gained popularity as a means for robust contact handling in physical modeling and for modeling self-avoiding shapes. The key to the success of these approaches is adherence to geometric constraints, i.e., avoiding intersections, which are the cause of most robustness problems in complex deformation simulation with contact. However, existing barrier-potential methods may lead to spurious forces and imperfect satisfaction of the geometric constraints. They may have strong resolution dependence, requiring careful adaptation of the potential parameters to the object discretizations. We present a systematic derivation of a continuum potential defined for smooth and piecewise smooth surfaces, starting from identifying a set of natural requirements for contact potentials, including the barrier property, locality, differentiable dependence on shape, and absence of forces in rest configurations. Our potential is formulated independently of surface discretization and addresses the shortcomings of existing potential-based methods while retaining their advantages. We present a discretization of our potential that is a drop-in replacement for the potential used in the incremental potential contact formulation [Li et al. 2020], and compare its behavior to other potential formulations, demonstrating that it has the expected behavior. The presented formulation connects existing barrier approaches, as all recent existing methods can be viewed as a variation of the presented potential, and lays a foundation for developing alternative (e.g., higher-order) versions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Many problems in computer graphics can be formulated as finding the global minimum of a function subject to a set of non-linear constraints (Minimize), or finding all solutions of a system of non-linear constraints (Solve). We introduce MiSo, a domain-specific language and compiler for generating efficient C++ code for low-dimensional Minimize and Solve problems, that uses interval methods to guarantee conservative results while using floating point arithmetic. We demonstrate that MiSo-generated code shows competitive performance compared to hand-optimized codes for several computer graphics problems, including high-order collision detection with non-linear trajectories, surface-surface intersection, and geometrical validity checks for finite element simulation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. We introduceTopological Offsets, a novel approach to generate manifold and self-intersection-free offset surfaces that are topologically equivalent to an offset infinitesimally close to the surface. Our approach, by construction, creates a manifold, watertight, and self-intersection-free offset surface strictly enclosing the input, while doing a best effort to move it to a prescribed distance from the input. Differently from existing approaches, we embed the input in a background mesh and insert a topological offset around the input with purely combinatorial operations. The topological offset is then inflated/deflated to match the user-prescribed distance while enforcing that no intersections or non-manifold configurations are introduced. We evaluate the effectiveness and robustness of our approach on the Thingi10k dataset, and show that topological offsets are beneficial in multiple graphics applications, including (1) converting non-manifold surfaces to manifold ones, (2) creating layered offsets, and (3) reliably computing finite offsets. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. We introduce a conceptually simple and efficient algorithm for seamless parametrization, a key element in constructing quad layouts and texture charts on surfaces. More specifically, we consider the construction of parametrizations with prescribedholonomy signaturesi.e., a set of angles at singularities, and rotations along homology loops, preserving which is essential for constructing parametrizations following an input field, as well as for user control of the parametrization structure. Our algorithm performs exceptionally well on a large dataset based on Thingi10k [Zhou and Jacobson 2016], (16156 meshes) as well as on a challenging smaller dataset of [Myles et al. 2014], converging, on average, in 9 iterations. Although the algorithm lacks a formal mathematical guarantee, presented empirical evidence and the connections between convex optimization and closely related algorithms, suggest that a similar formulation can be found for this algorithm in the future. 
    more » « less
  5. Zorin, Denis; Jarosz, Wojciech (Ed.)
  6. Burbano, Andres; Zorin, Denis; Jarosz, Wojciech (Ed.)
  7. Abstract Two‐scale topology optimization, combined with the design of microstructure families with a broad range of effective material parameters, is widely used in many fabrication applications to achieve a target deformation behavior for a variety of objects. The main idea of this approach is to optimize the distribution of material properties in the object partitioned into relatively coarse cells, and then replace each cell with microstructure geometry that mimics these material properties. In this paper, we focus on adapting this approach to complex shapes in situations when preserving the shape's surface is essential. Our approach extends any regular (i.e. defined on a regular lattice grid) microstructure family to complex shapes, by enriching it with tiles adapted to the geometry of the cut‐cell. We propose a fully automated and robust pipeline based on this approach, and we show that the performance of the regular microstructure family is only minimally affected by our extension while allowing its use on 2D and 3D shapes of high complexity. 
    more » « less
  8. We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations. 
    more » « less